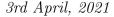


Gaussian Universal Standard Actual Junior Mathematical Olympiad

- \Box Each problem is worth 7 points. There is negative marking and there is partial marking.
- \Box Any type of fake solve or proof is highly discouraged, it will result in loss of your marks.
- □ Note that the use of Barycentric co-ordinates, Complex Numbers, Moving points or Co-ordinate geometry in solving geometry problems does not result in a loss of points. Note that 1 point will be deducted if the diagram for a geometry problem if and when required is not drawn.
- □ Submission Deadline is 11th April 2021. Submit your subjective solutions to Aritra12, TLP.39, Orestis_Lignos, EpicNumberTheory, Phoenixfire,i3435 added in one PM on AoPS PM.
- □ The Search Function won't help you since all problems are original. If you do find any problem that is not original PM it to us immediately.



- J-4. On the board n positive integers are written, let them be a_1, a_2, \ldots, a_n . Let p, q be two prime numbers such that $p \neq q$. We are allowed to execute infinitely many times the following procedure: We pick two numbers a, b written on the board, we delete them and replace them with pa qb, pb qa. After 2021 applications of this procedure, let k be the product of all numbers on the board that time. If we know that $k^{(p-1)(q-1)} \not\equiv 1 \pmod{pq}$, then prove that there exists a $i \in \{1, 2, \ldots, n\}$, such that either $p|a_i$ or $q|a_i$.
- J-5. In a $\triangle ABC$, let K be the intersection of the A-angle bisector and \overline{BC} . Let H be the orthocenter of $\triangle ABC$. If the line through K perpendicular to \overline{AK} meets \overline{AH} at P, and the line through H parallel to \overline{AK} meets the A-tangent of (ABC) at Q, then prove that \overline{PQ} is parallel to the A-symmedian.

Note: The A-symmedian is the reflection of the A-median over the A-angle bisector.

J-6. Let $S = \{1, 2, ..., n\}$, with $n \ge 3$ being a positive integer. Call a subset A of S gaussian if $|A| \ge 3$ and for all $a, b, c \in A$ with a > b > c,

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} < 5$$

holds true.

- (i) Prove that $|A| \leq \lfloor \frac{n+2}{2} \rfloor$ for all gaussian subsets A of S.
- (ii) If a gaussian subset of S contains exactly $\lfloor \frac{n+2}{2} \rfloor$ elements, then find all possible values of n.

Language: English

Each problem is worth 7 points 4 hours and 30 minutes only